

Power curve for the WindPorts[™] 5 & 20 kW

Estimated power (W) Vélocity (m/s) Rotation vs vélocity RPM 2 '

Calculated power curve for the WindPorts 5 kW

Notes: Start rotating speed: **1.8 m/s** (compared to 3.1 m/s with rotor type turbines) Energy is being generated as early as **2.5 m/s** (compared to 3.4 m/s with rotor type turbines) The unit includes a programmable electronic module used to stabilize the volume of incoming air based on local conditions and the user needs. The volume of air has been limited to **25 m/s** in these charts. Most propeller type turbines are stopped when wind reaches between 15.6 m/s and 19 m/s. The **20 kW** produces **95% of 4 times the energy produced by the 5 kW** unit. **Tests:** Tests conducted in the national Research Council of Canada 9 m wind tunnel

Vélocity (m/s)

Calculations and CFD Modeling: Swiderski Engineering Inc, Ottawa, Canada

Technical data

Materials:

: Fiberglass
: Aluminium T6
: Cold roll steel
: Stainless steel
: Composite

Sizes:

WindPorts [™] 5 kW Maximum diameter : 4.4m (14.44') Approx. weight. (Without drive shaft)	Height : 1000 Kg	: 4.13 m (13.55')
WindPorts [™] 10 kW Maximum diameter : 4.4 m (14.44') Approx. weight. (Without drive shaft)	Height : 1910 Kg	: 6.8 m (22.31')
WindPorts [™] 20 kW Maximum diameter : 4.4 m (14.44') Approx. weight. (Without drive shaft)	Height : 3700 Kg	:13.6 m (44.62')

Reproduction forbidden without prior authorization. This data is supplied for informative purposes only and without responsibility regarding usage